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H E A T  A N D  M A S S  T R A N S F E R  I N  P O R O U S  M E D I A  

O. G. Martynenko and N. V. Pavlyukevich UDC 532.62:536.24:536.423:533.7:535.34  

A br ie f  survey o f  works  concerned  with transfer  processes  in porous  m e d i a  is given. 

1. METHOD OF AVERAGES 

One of the main problems encountered in describing heat and mass transfer processes in porous media (as 

in heterogeneous media in general) is to obtain a system of corresponding macroscopic equations for average 

quantities. In the phenomenological theory of heterogeneous media such a system is derived using the laws of 

conservation of mass, momentum, and energy for each phase. However, to close the system, it is necessary to adopt 

additional assumptions when determining quantities describing interphase interactions. 

The method of averages makes it possible both to derive the above equations in a more rigorous way and 

to obtain expressions for the interphase interaction intensity, stress tensor in phases, energy flux, etc. in terms of 

the instantaneous values of microparameters in the phases (including pulsation components). In order to close the 

equations, these quantities must then be expressed in terms of the macroscopic (average) parameters and their 

derivatives. 
Behind the method of averages, described in detail in the monograph I1 ] and in [2, 3 ], lies the following. 

Let us consider a heterogeneous medium consisting of two phases. Choose [1 ] the volume element d V  = 

d V  l + d V  2 containing the interface S12. A dimension of this volume is, on the one hand, much less than the 

characterist ic dimension of the body but, on the other hand,  it considerably exceeds the dimensions of 

microinhomogeneities (pores). Next, introduce the volume concentration of the phases e i = d V i / d V  and the relative 

interface s12 - - - -  SI2/dV. The macroscopic quantities are introduced by performing averaging over the phase volumes 

d V  i and interfaces dS12 as follows: 

Here 

1 1 
(~Oj) i -- d V  i dVif ~o I d 'V ,  (~oi)12 - dSl2 dS12f ~o I. d'S . 

(~O')V z (~ ' )  = E. I (~'1)1 + ~2 (~0'2)2 

(the primed quantities indicate instantaneous values that are averages in the microvolumes d'V). 

It should be noted that in averaging over the phases (i.e., over a part of the volume dVi ) ,  unlike in averaging 

over the entire volume, the average of the time t derivative can differ from the time derivative of the corresponding 

averaged function ((0991/Ot)i ~ O(~o~)i/Ot) [1-3 ]. A similar situation also occurs in differentiating with respect to the 

space coordinate. We give a formula that relates the space derivative of the phase-averaged function to the averaged 

space derivative of the instantaneous values of the corresponding functions [1-3 ]: 

t 'k 

dS12 

where n~ is the outer (with respect to the i-th phase) normal to the interface sij (i, j = 1, 2), and the superscript k 

pertains to the corresponding coordinate. 
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Now it is necessary  to apply averaging to the equations of conservation of mass, momentum,  and  energy,  

which describe micromotion in the phases,  by integrating them over the microvolume dV  i. In part icular,  the equation 

of conservation of mass of the i-th phase acquires the form 

OP i e i 
0---7-- + div (ffi ei vi )  = J] i ,  ( 1 )  

where Pi = (Pi)i = (tgi)V/ei is the actual densi ty  [l ] (the mass of the i-th phase per unit volume of the i-th phase) ,  

v i is the vector of the mean  mass velocity ~ivi = (ojvj)i), and the quantit ies Jij dete rmine  the averaged in tens i ty  of 

phase transit ions (if any)  on the interface, 

' 1 ' 
d21 = S I 2  ( /~1'  (Vl n _ N 'n))12 - -  d V  f /~1' (Vl rt _ N 'n) d ' S  ; J 2 l  = - J 1 2 ,  

S l 2  

where N 'n is the velocity component  of interface displacement.  

Similarly, we can represent  the equations of conservation of momentum of the i-th phase for the averages 

(with account for  the tensor  of pulsation stresses) and  the equation for the internal  energy  of the i- th phase  (or 

for the total specific energy  of the i-th phase,  consisting of the internal  energy,  kinetic energy  of macromot ion,  and  

kinetic energy of pulsations) [1 ].. 

Consider  a sa tura ted  porous medium consisting of a solid phase (phase 2) whose pores are  filled with a 

liquid or a gas (phase I).  In a porous medium with an immovable solid phase (v2 -- 0),  the averaged tensor  of 

viscous stresses in phase 1 is neglected (i.e., the viscosity is taken into account only  in the force of in te rphase  

interaction).  Moreover,  the inertia forces, momentum transfer  by pulsations, and kinetic energy  of pulsations are  

also cons idered  to be negligible. With the above assumptions taken into considerat ion,  f rom the equat ion of 

conservation of momentum an expression follows that corresponds to the l inear Darcy law relat ing the rate  of liquid 

(gas) filtration w - (v~) = ev I to the pressure gradient  Vpl in a sa turated isotropic porous medium: 

w = e v t = - k° Vp 1 , (2) 

where e is the porosity; ko is the penetrat ion factor (with the dimensional i ty  of a rea ) ; /x  is the dynamic  viscosity. 

In the l i terature,  various empirical expressions are known for k0. In particular,  according to the K ~ r m a n - K o z e n i  

formula [4 ], ko = e3/5S  2 (S is the specific surface of the pores).  For a model porous body consisting of homogeneous  

solid spheres with diameter  ds, k0 = e2d2s/180(1 - e) 2. Th e  square law of fil tration [4 ] is also used: 

vp l = - - w  f l - - w ,  (3) 
~0 v~0 

where fl is an addit ional  characterist ic of the porous medium. The  quadratic term in (3) plays an impor tant  role, 

for instance, in media consisting of coarse particles. A deviation from the Darcy law at low filtration rates is observed 

in colloidal capi l lary-porous bodies and in the case of filtration of rheological fluids [4 ]. 

Saturat ion 0 of a porous body with such a fluid fl is de te rmined  by the relative part of the void volume 

occupied by this fluid (0 = eft~e). For saturated porous media (0 = 1), using the cont inui ty  equation (1) (in the 

absence of phase transitions Ji/= 0) and the Darcy law (2) and omitt ing the subscript  1 for if, p, we arr ive at 

Oe/g = div Vp 
Ot ~ -  " 

Proceeding from the assumption of weak compressibili ty for the liquid and the porous medium, i.e., cons ider ing  

the relative changes in ~ and e to be small, from the latter equation we can write an equation for an elastic fi l tration 

regime [51: 



o ,  '< ' o, 

which coincides with the classical heat  conduction equation (x is the piezoconductivity). To describe gas filtration, 

the compressibility of which is considerably higher than that of the porous medium, the following equation is 
obtained for the isothermal case [5 ]: 

Op_ k o V2p2 
Ot 2#e " 

Rigorous allowance for elastic deformations of the solid phase will be discussed below. 

2. UNSATURATED POROUS MEDIA AND SURFACE PHENOMENA 

In investigations of heat and mass transfer processes with phase changes in porous materials unsaturated 

porous media attract great interest. The phase interaction in a body complicates transfer processes considerably, 

thus leading to interrelated heat and mass transfer. This is of particular importance for moisture flow investigations 

in soils, development of drying technologies for moist materials, and impregnation of the latter. 

In unsaturated media, surface phenomena play an important role. Capillary pressure is an additional 

pressure of the surface layer of the liquid which is caused by surface curvature. In thin layers of liquids (with a 

thickness of about 10 -5 cm) wedging pressure develops [6 ]. In this case, the hydrostatic pressure in a thin film 

differs from the pressure in the adjacent volume phase, which is related to the forces of molecular interaction 

between the liquid in the thin layer and the adjacent phase. 

The wedging pressure //(h) depends on the film thickness h and is equal to the difference between the 

pressure on the film surface and the pressure in the volume phase. If the film thickness h(x) changes over the 

length, then a gradient of the wedging pressure develops and, as a consequence, liquid flow. Therefore, in 

calculations of the rate of liquid evaporation from a cylindrical capillary of radius r the expression for the total 

vapor flow Q (g/sec) can be written as a sum of the volume Qv and surface Qs flows [6 ]: 

h 3 jrr2DM dp 2xr pf dH (4) 
-- jrr2Qv Q = + 2 ~ r Q  s - _ + - - ,  

RT dx 31t dx 

where D is the vapor diffusion coefficient; M is the molecular weight; R is the universal gas constant. The last term 

in (4) describes the substance flow in the adsorbed film between the meniscus and the capillary opening. The 

contribution of the film flow to the total mass flow in evaporation from capillaries increases with the relative vapor 

pressure in the surrounding medium, i.e., with increasing 9' = PV/Pe (Pv is the vapor partial pressure in the 
surrounding medium, Pe is the saturated-vapor pressure). In particular, for water at ~o <__ 0.75 the influence of the 

film flow can be neglected. 

In [6], the authors describe investigations of the surface forces and the different wedging-pressure 

components as well as various phenomena of mass transfer caused by special properties of thin layers of liquids. 

Such phenomena include, in particular, capillary osmosis, i.e., the occurrence of a liquid flow in the presence of a 

concentration gradient of a dissolved substance along a capillary, and thermocrystallization-induced flow of thin 
nonfreezing interlayers between ice and a solid surface (the existence of which in soils and grounds is related to 

surface forces) due to temperature and pressure gradients. 

3. INTERRELATED HEAT AND MASS TRANSFER INVOLVING PHASE CHANGES 

Using methods of the thermodynamics of irreversible processes, A. V. Luikov has derived a system of 

equations for various phenomena and their interrelations [7 ]. Here, the corresponding potentials and macroscopic 

transfer coefficients are also determined. In particular, the interrelated heat and moisture transfer in capillary- 



porous bodies with allowance for phase changes, provided that the total change in the specific moisture content of 

a body u is attributable to moisture transfer and liquid-into-vapor phase transformation, is described in the one- 

dimensional case by the following system of equations: 

OT 1 O ( 2 0 T )  ~ Q  Ou (5) 
o t  - c o p  o o x  + c o o-7 '  

Ou O (z, du dT) (6) 
O t - O x -~x + x '5 " -~x " 

In the general case, the transfer coefficients depend on the moisture content u and the t empera ture  T. Here Z = 

~.'/po c' is the vapor diffusion coefficient; P0 is the density of the dry body; c' is the specific isothermal mass; ,I is 

the thermal conductivity; Cp is the specific heat; b' is the thermal-gradient coefficient, which includes the ratio of 

the thermal-diffusion and moisture-diffusion coefficients as one of the summands; ~p is a criterion of phase changes 

that characterizes the ratio of the change in the moisture content due to evaporation to the total change in the 

moisture content; Q is the heat of phase transformation. The criterion g, is most often treated as a continuous 

function of the coordinates (or the moisture content). In the presence of deepening of the evaporation zone, the 

system of equations (5) and (6) is considered for each zone, while g,(u) is represented in the form of a discontinuous 

function. 

In the case of high-rate drying processes inside a moist material, a total-pressure gradient exists since the 

pressure drop of moist air caused by liquid evaporation does not relax instantaneously. In this case, the system of 

equations (5) and (6) changes, namely, in each of these equations a term proportional to Ap appears on the 

right-hand side and an equation for p (diffusional-filtrational moisture transfer [7 ]) is appended. 

Allowance for the finite velocity of substance propagation in the context of the linear theory of interrelated 

heat and moisture transfer considered leads to the system of equations [4 ] 

O_T_T _ ~t 02T + ~OQ Ou 

Ot CppO Ox2 c o Ot ' 

, 0 2 u  , O2u 02T 
O_u_u + ~ _ _  = Z  - +Z'5 '  
Ot Ot 2 Ox 2 Ox 2 " 

The last expression is a hyperbolic equation, while the energy equation is an ordinary parabolic equation, since 

the relaxation time of the heat flux is considerably smaller than that of the mass flow ~'. It should be noted that 

the effect of the finite velocity of moisture propagation can be also described by a nonlinear convective-diffusion 

equation for unsaturated media. 

The system of equations of A. V. Luikov is widely used to describe drying processes. In the period when 

the drying rate decreases, the evaporation zone is observed to deepen inside the body. If vapor removal is so vigorous 

that the mechanism of capillary transfer does not provide replenishment of the dried pores with liquid, then a front 

is formed that moves into the body (a high-rate drying regime [8 ]). The mathematical model of such a process is 

based on a Stefan-type problem for whose correct formulation an additional expression is needed in order  to relate 

the velocity of the evaporation front to the temperature on it. In some cases, for model porous media such a relation 

can be obtained from consideration of the kinetics of mass transfer in individual capillaries [9 ]. In the general case, 

evaporation proceeds not only on the deepened surface but in some zone as well. This is attributable, in particular, 

to various forms of binding of moisture with the material. 

4. MULTIPHASE FILTRATION 

The recognized merits of the theory of A. V. Luikov are its generality and simplicity, while its drawbacks 

lie in the impossibility of finding the phase distribution in a porous body and of evaluating the role of different 

4 



mechanisms of mois ture  transfer .  Therefore ,  mult iphase-f i l t ra t ion theory  is often used,  in which the basic 

assumption is the independence of motion of individual phases. In particular, in the case of filtration of a two-phase 

mixture of a liquid and  its vapor it is assumed that the Darcy law (or a generalization of it) is valid for each of the 

phases: 

kokg 
Wg = e0gVg = -- /tg Wpg, (7) 

kokf 
wf = e0f vf = /~r VPf'  (8) 

where  0g, Of are  the  sa tura t ion  of a porous body with gas and  liquid, respectively; kg, kf are  the relat ive 

penetrabilities of the gas and liquid phases, which are functions of the saturation [2, 5 ]. The pressures in the gas 

and  liquid phases in an actual porous body are related through the capillary pressure Pa by the expression 

Pg -- Of = Pa = 2o" COS ~o / (0f), (9) 

where 7' is the wetting angle; f(Of) is the Leverett function [4, 5, 10 ]. 

With neglect of the diffusion process in the assumption of ra ther  intense evaporation, the cont inui ty  

equation for the gas phase in the one-dimensional  case acquires the form 

0 (ffgWg) (10) 
e + Ox = Jfg ' 

where the expression for the evaporation rate can be approximately written as [11 ] 

Pe (T) exp I P°34 

[ 
- p g  

00g 
Jfg = e 

~ 2 J r R T / M  Ox 

The continuity equation for the liquid phase is similar to (10); here J g f  = --Jfg. 

Now we write the energy equations under  the assumption that  the temperature of the solid phase (skeleton) 

Ts differs from that of the gaseous and liquid phases T: 

OT s O [~s(1 - e )  OTs] 
(1 - e ) ,Os  Cps O~- - Ox -dX-X J - a v  (Ts - T) , (11) 

OT OT O I) t OT] e [OgpgCpg+OfpfCpf]~-[+ [ l~gWgCpg+f i fWfCpf ] -~x -J fgQ=-~x  f e f f ~ -  X + a v ( T  s - T) .  (12) 

Here Q is the specific heat  of vaporization, and a V is the volume heat  transfer coefficient. 

In this model an important problem is determination of the effective thermal conductivity of the heat carrier 

i f  eff and the internal  heat t ransfer  coefficient a v. Many works devoted to these aspects have been published in 

recent years. Thus,  in [10, 12 ], for a porous body consisting of spherical solid particles of diameter  ds it is suggested 

that  use the following expressions for ;tf eft and a v  be used: 

('~f eff)x : e ,~.f + 0.5,~f Pr Re d 

(in the two-dimensional case, in the expression for 0.f eff)y the coefficient 0.1 enters the second term on the 

r ight-hand side), 

5 



Nu = 2 + 1.1 Pr  1/3 Re ° 6 ,  

where Nu = ads/2 f  is the Nusseit  number ,  

p~ Vfx d~ 
S = 6 (1 - e ) / d  s , Re d - /~f , Pr  =/xf  cpf/2f .  

It is per t inent  to note that  at high filtration rates,  i.e., at high Peclet numbers  (Pe = RedPr >> 1), when 

the conductive heat  t ransfer  is often neglected, dispersion effects caused by irregulari ty of the velocity field due to 

the random st ructure  of the porous medium play an important  role and lead to a considerable  increase  in the 

effective thermal  conductivity [ 13 ]. In this case, 2f ef f  becomes an anisotropic quanti ty,  since the dispersion effects 

are  most pronounced in the direction of filtration. 

In [14 ], on the basis of an  analysis of momentum t ransfer  on a porous m e d i u m - h o m o g e n e o u s - l i q u i d  flow 

interface, two conjugation boundary  conditions are obtained for the flows in these media.  One of them is equality 

of the average velocities at the interface, while the other  is the relationship between the transverse derivatives of 

the average velocities and the average velocity in the porous medium. 

Based on the system of equations for two-phase filtration, mathematical  models for  processes of dry ing  [2, 

8 ] and impregnation and forced replacement  of a liquid [5] have been developed. 

5. CONVECTIVE D I F F U S I O N  IN POROUS BODIES 

The  irregulari ty of the velocity fields in actual porous bodies is responsible for  both the increase  in the 

effective thermal  conductivity and the dispersion of a foreign dissolved substance or tagged liquid particles in the 

course of liquid filtration [15-171. In these cases, the total mass t ransfer  is described by  an equation of convective 

diffusion with an effective diffusion (dispersion) coefficient dependent  on the mean velocity. 

In the simplest case, when instead of the porous medium some equivalent capil lary tube of radius r is used, 

we have [4, 15] 

- -  + w -  = D e f  t - -  
Ot Ox Ox 2 ' 

where Def  t = D + r2w2/48D; b-is the mean impuri ty concentrat ion over the tube cross section; D is the molecular-  

diffusion coefficient; w is the filtration rate. However, for complex porous media such an approach is r a the r  crude. 

In [15, 16 ], the  following approach is suggested to describe convective diffusion. In averaging the local 

equation of convective diffusion in an individual pore (but with allowance for f luctuations in the velocity and  

concentrat ion fields), the assumption is made  that the average over the product  of the velocity and concentra t ion 

fluctuations is an  addit ional  pulsation flux of the substance proportional to the gradient  of the mean (over the pore 

space) concentrat ion.  The  proport ionali ty factor is the tensor  of convective diffusion, dependen t  on the average-  

velocity vector ~: 

Daf = (21 - 2 2 )  vav~ +22 }~l 6a#, 
Ivl 

where 21 and 22 are,  respectively, the longitudinal and t ransverse scattering parameters  of the porous medium, 

having the dimension of length; the subscripts a ,  fl pertain to the Cartesian coordinates;  6af is the unit  tensor.  In 

[16 ] it is noted that/12/21 ~ 0 . 1 ,  i.e., the longitudinal dispersion is more pronounced than the t ransverse  one, and 

21 = 1024-Ro0. In the general  case, the parameters  21 and 22 depend on the diffusional Peclet number  Pe --- -~ds/D. 
If we assume that the fillation rate direction coincides with the Xl axis, then the convective-diffusion tensor  Daft 
can be replaced by the longitudinal D i] = 2iv and transverse D± = 22v diffusion coefficients. Th e n  the diffusion 

equation acquires the form [15 ] 

6 



_ n e ' l  

O.O8 I 

O.t 0.5 ! 5 tO 50o~ 
Fig. 1. N l / ( 1  - r /el / t /al)  versus a for l - -  30: I) t /al/r/a 2 -- 0.1, II) 1, III) 10, 
IV) 100, V) one-component  flow. 

 - +Wax-S-0xW , a x , ) + 2 o x 2 ) + 3 o x 3 ) ' 

where w = e~ is the fil tration rate,  and ;12 = 23. 

6. K I N E T I C  M E T H O D S  FOR DESCRIBING T R A N S F E R  P RO CES SES  IN POROUS MEDIA 

The  choice of kinetic methods to describe gas flows in porous media depends on the model  of a porous 

body adopted.  In particular,  the models of nonintersect ing capillaries and  a "dust- laden" gas [18-20 ] allow use of 

methods  of the kinetic theory  of gases. 

In the case of the capillary model,  calculations are  based on expressions obta ined in gas flow investigations 

in cylindrical channels  for various Knudsen numbers  (Kn is equal to the ratio of the mean free path of the molecules 

to the capillary radius) .  In [8, 20 ], various interpolation formulas are given for a gas flow (for both one-componen t  

and gaseous-mixture  flows) through a capillary that provide exact expressions in the limiting cases of the Knudsen  

(Kn -~ co) and  cont inuum (Kn --, 0) regimes as well as satisfactory agreement  with exper imenta l  da ta  in the 

t ransient  regime (Kn = 1), reached by means of fitting parameters.  

Similar interpolation formulas have also been obtained to describe diffusion processes in a porous medium 

[8 ], but here,  as a result of averaging, effective diffusion coefficients (in the absence of convection) emerge.  

It should be noted that  such expressions do not allow for the features related to the presence  of phase or 

chemical changes,  movable adsorbed layers  in capillaries, and a deepened  evaporation boundary  in a porous body.  

These  factors have been taken into account in [9 ] by solving model kinetic equations describing the flow of a b inary 

vapor-gas mixture  in a cylindrical  capillary of radius r in which the filler (component 1) evaporates at the depth  

L. Component  2 is a foreign gas (e.g., air) whose density at the channel  inlet is na2, and hal < nel (nel is the 

sa turated-vapor  densi ty) .  Note that in the present  problem the par t ia l -pressure gradients are not specified (unlike 

the Poiseuille problem) but are determined in solving the problem. In Fig. 1 the reduced vapor flow rate  N1 is 

represented as a function of the rarefaction parameter  a - 1 / K n  for different  densi ty ratios nal/na2. It is shown, 

in particular,  that  a neut ra l  gas, added  even in a small amount ,  exer ts  a pronounced inf luence on both the 

magni tude  and  charac te r  of the N] vs. a curve (as compared to the limiting case of a one-component  flow). 

Considerat ion is given to the domains of applicability of the known phenomenological  relations, namely ,  Fick's law, 

the expression for a Stefan flow, and the Poisseuille formula. 

A similar kinetic problem of mass t ransfer  in the case of one-component  vapor fil tration and  the presence 

of a deepened evaporation zone has also been considered [21 ] for the "dusty gas" model,  i.e., for a highly porous 

body modeled by a homogeneous system of randomly distr ibuted spherical particles (Fig. 2). Simple expressions 

are derived for the evaporation rate, penetrabil i ty factor, and densi ty jump (outlet resistance) at the g a s - p o r o u s -  
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Fig. 2. Geomet ry  of a highly porous layer.  

medium interface as a function of the Knudsen number  (here Kn is equal to the ratio of the mean  free pa th  to the 

radius of a coarse particle r). In particular,  the expression for the dimensionless evaporation rate  UL is as follows: 

2 
e v L 

htL = - -  1 / 2  ( 4  e 2 
n - 2e -- + A) 

where e is the porosity;  v L = ( n  L - -  n e ) / n e ,  

A = 9 (1 - e) L Kn B (Kn)  ; B = 15 - 3 Kn + 3 (8 + zc) Kn 2 

1 5 +  1 2 K n +  1 8 K n  2 + 5 4 K n  3" 

The  plot of uL versus 1 /Kn  is a curve that at first increases very slowly from the free-molecule value. T h e n  start ing 

approximately  from Kn -- 1 the parameter  UL increases more sharply,  thus turning into the l inear  dependence  

uL - 1 / K n  typical for a viscous gas flow. Finally, with fur ther  decrease  in the Kn number ,  UL reaches  a constant  

value corresponding to evaporation from an open surface. A comparison of the results obta ined and  exper imenta l  

data  has shown that in the region of low Kn it is necessary to introduce a correction factor  that  depends  on the 

porosity and allows for flow "constriction" in the porous medium. 

7. RADIATIVE T R A N S F E R  

When porous materials are  exposed to radiation,  the researcher  is faced with the impor tant  problem of 

s imultaneously describing radiat ion t ransfer  and absorption,  on the one hand,  and the t empera tu re  field in the 

porous body with the internal  heat  source formed,  on the other  hand.  In particular,  these aspects are  investigated 

in [22 ] in relation to the problem of the drying of capil lary-porous materials (foodstuff) by infrared radiat ion.  The  

basic challenge in such problems is determinat ion of the effective optical propert ies of a volume element  in the 

porous (dispersed) medium. For  instance,  the absorption and scattering coefficients are often calculated for an 

individual scattering and then the result  obtained is multiplied by the number  of scat terers  per  unit  volume. In 

[23], the effective absorpt ion and  scat ter ing coefficients of a bed consisting of randomly packed spheres  are 

de te rmined  using two-flow equations and  the Monte Carlo method.  

However ,  it is not a lways advisable  to cons ider  inhomogeneous  sca t te r ing  a n d  abso rb ing  media  as 

pseudohomogeneous media with volume-averaged optical properties.  In cases where part icular  models of porous (or 

dispersed) media are used, o ther  methods  can also be employed.  

In [24 ], a mathematical  model is proposed for the effect of radiat ion fluxes in vacuum on porous bodies 

with a capillary s tructure with allowance for radiat ion t ransfer  (channeling) in pores with non t ranspa ren t  walls. It 

is shown that in the case of low emissivities of the material of the capillary walls e r, it is impor tant  to know the 

distribution of the heat source over depth,  since with decreasing er the difference in the energies absorbed  by the 



body in its volume and over its surface increases. This follows from the formula for the ratio of the total absorbed  

radiat ion energy r to the incident radiat ion flux J0: 

r] 
L :0 ' 

where r*/ jo ,  j l /Jo  are the portions of radiat ion flux absorbed by the lateral surface of the capillaries and  their  

bottom, respectively. The  quanti ty in square brackets tends to zero as e r ~ 1. 

This feature  is most pronounced in the case of pulsed-periodic irradiation. Th e  model  ment ioned  is used 

in [25 ] to describe heat  and mass t ransfer  in composite materials such as glass-fiber plastic, exposed to radiat ion 

fluxes, with allowance for their  loosening (the formation of a porous layer) .  

In practice, porous bodies with a globular s tructure are  often used. In such cases,  the model  of r andomly  

ar ranged spheres is more adequate.  In [26 ], a survey is made of the s ta te-of- the-ar t  of the problem of radiative 

heat  t ransfer  in packed and fluidized beds that are mult iphase systems consisting of solid particles (spheres)  and  

a gas. Th e  choice of the methods for calculating the scattering and  absorption characterist ics of a mult ipart icle 

system depends on a mode of radiat ion scattering by the system. In that  work the au thor  presents  (for a d isordered  

distribution of particles) a diagram of independent  and collective scattering by particles in relat ion to the volume 

portion of particles and the parameter  a = ~ds/2t r or the gap between the particles L d (ds is the particle diameter ,  

ar is the radiat ion wavelength).  It is shown that the line Ld/2r  = 0.5 separat ing the regimes of dependen t  and  

independent  scattering corresponds to a 5% deviation from the Mie theory of independen t  scattering. 

Radiat ion t ransfer  in a layer  of a highly porous body with r andom ar rangement  of non t ranspa ren t  particles 

of the skeleton can be described by an integral t ransfer  equation obta ined in the approximat ion of the mean free 

path of photons [27 ]. 

Based on simultaneous solution of the problems of radiat ion t ransfer  and  uns teady  heat  conduct ion in a 

highly porous layer,  it is shown that the power densi ty distribution of the absorbed energy  can differ  considerably  

from an exponential  dependence  of the Bouguer type. In particular, for a collimated flux of external  radiat ion the 

ment ioned distr ibution can have a maximum inside the body or be a monotonically decreasing funct ion of the 

coordinate,  depending on the porosity,  layer  thickness, emissivity, and heating time. 

Use of the model described in [27 ] allows evaluation of the effective emissive power of an isothermal  highly 

porous (dispersed) layer,  which tends to an asymptotic value with increase in the layer  thickness [28 ]: 

2~ ~-r e-roo = (I -- e) e r + 
1 + v7~ 

where e is the porosity,  e r is the emissivity of a particle surface. In the nonisothermal  case, an approximate  analyt ical  

expression is obta ined for the radiation flux density at the layer  outlet. 

Numerous  applied problems are related to the interaction between radiat ion and o ther  mechanisms of heat  

t ransfer  in porous media. In the case of conductive-radiative heat t ransfer  the radiat ion t ransfer  equation must be 

solved s imultaneously with the equation of the energy in a porous body.  For this, i teration methods  are  usually 

employed.  Th e  situation becomes even more  complicated if convective heat  t ransfer  is also involved. A survey of 

such works is made  in [26 ]. 

Recent ly  impetus has been given to investigations of radiative-convective heat  t ransfer  in porous bodies 

aimed at implementat ion of heat  recovery by radiation in plasmachemical reactors containing porous plates [29 ]. 

In [30 ] a scheme of heat  recovery by radiat ion inside a system consisting of two highly porous plates is discussed. 

There ,  it is suggested that radiative heat  t ransfer  be employed for heat ing of a porous plate through which air 

leaks, thus causing its heating as a result  of heat t ransfer  between a gas and the skeleton of the porous plate. This  

makes it possible to obtain a tempera ture  higher than the adiabatic one. 



Fig. 3. Schematic of filtration combustion (q is the extent  of t ransformat ion 

of the t reated material;/- 're is the react ion-zone width; u is the l inear  velocity 

of the reaction wave; T is the temperature) :  1) without heat losses, 2) with 

allowance for heat losses. 

8. F I L T R A T I O N  C O M B U S T I O N  

By filtration combustion of porous condensed systems is unders tood propagation,  in a porous body,  of the 

exothermic reaction of this body (or a component  of it) with the active component  of a gaseous mix ture  (consisting 

of an ox idan t  and  an iner t  gas) f i l tered through it. Though  this process has long been used (s inter ing and  

agglomeration of ores), recent ly  it has found a number  of new applications. 

Th e  essence of this process lies in the fact that  at some site of the reaction zone of a technological appara tus  

apr imary thermal  wave is initiated by an "external" energy source that,  t ransforming the initial substances  into the 

end product,  is mainta ined owing to the heat of the chemical reaction. Here,  the reaction zone moves in the wake 

of the thermal  wave (Fig. 3). 

Th e  me thod  of thermal  waves is used in SHS technology,  i.e., in se l f -propagat ing  h igh - t empera tu re  

synthesis  of high-melt ing and other  inorganic materials [31 ]. In this case, gas fi l tration to the react ion zone is a 

natural  event,  and the process itself is self-regulating. 

A combustion regime involving forced fi l tration of a gaseous mixture  makes it possible to regulate  the 

temperature  and other  characteristics of the reaction wave. In [32 ], an analytical  theory  of fi l tration combust ion 

involving forced fi l tration of a gas is developed. This  method allows the appropriate  technological process to be 

conducted at an opt imum temperature  with the desired extent  of t ransformat ion (oxidation) of the t rea ted  material .  

Fil trat ion combust ion  f inds diverse application in technology,  e.g., agglomera t ion  of ores  [33],  syn thes i s  of 

materials [34 ], sani tary  purification of industrial exhaust  gases with direct combust ion of toxic wastes [35 ], and 

adsorptive-catalytic processes with adsorbent  recovery in a wave Of filtration combust ion [36 ]. 

The  process discussed has ano ther  more important  field of application, namely,  power engineering.  The  

case in point is combust ion of gaseous fuel in burners  with porous nozzles or in a layer  of a porous f i re-resis tant  

material for the purpose of increasing the efficiency of the process. In [37, 38 ], investigations have been conducted 

aimed at reaching superadiabatic temperatures  in a system of two porous plates upon gaseous-fuel  combustion.  A 

combustible gas with a ra ther  low heat content  flows into a porous medium, where it regular ly  reverses its direction. 

The  enthalpy of the exhaust  gas is regenerated efficiently by a sys tem of recirculating flows, thus increasing the 

enthalpy of the combustible gas in the porous medium and,  as a result,  accumulating heat ,  i.e., a superadiabat ic  

temperature  is reached by recove/'y of the combustion products of the gaseous fuel, with the thermal  energy  being 

re turned to the reaction zone upon changing the direction of pumping. These  and o ther  aspects of combust ion in 

porous bodies were discussed at the International Workshop held in Minsk (Republic of Belarus) in 1997 [39 ]. 
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9. HEAT EXCHANGERS WITH POROUS COATS 

Heat exchangers with porous coats are in wide use in technology. Such porous inserts allow considerable 

(severalfold) enhancement of heat transfer from a heating surface to a liquid flowing in a porous layer [40 ]. Porous 

coats are also used for intensification of heat transfer under boiling conditions since in these cases the heat transfer 

crisis can occur at higher rates of heat flow. However, the influence of a porous coat on the characteristics of the 

boiling transfer crisis is rather complicated and depends on the coat properties and the flow structure [41 ]. 

In [42 ], heat transfer in filtration flow of liquids in pipes is investigated. Here, in particular, it is shown 

that two ranges of parameters are distinguished: at low Reynolds numbers Red heat transfer depends not only on 

Red but also on the ratio of the diameters of the tube and the spherical particles of the packing, while at high Red 

values it is completely determined.by Red. In the latter case, all experimental data are grouped around the depend- 

ence [42 ] 

Nu = 0.4 Re 0"67 Pr °'4 . 

Heat-pipe heat exchangers also find wide application [43 ]. Recently, heat exchangers with sorption by 

solids have being developed. In [44 ], the authors describe and analyze a design of a heat pump with sorption on 

a solid where heat is recovered by a heat pipe in the presence of a condensing (evaporating) coolant. Such devices 

are an alternative to compression systems. 

10. DEFORMABLE POROUS MEDIA. HEAT AND MASS TRANSFER IN SOIL 

In a rigorous account of elastic deformations of a porous skeleton, use is made of a generalized Hooke law, 

that is a relationship between fictitious stresses (caused by transfer of forces via contacts between grains of the 

solid phase), the pressure in the pores, and deformations of the solid phase [I, 45]. In this case, the tensor of 

macrodeformat ions  of the solid phase is equal to the sum of the tensor  de termining  the contr ibut ion of 

microdeformations of the grain material and the tensor of fictitious (effective) deformations due to displacements 

of grains relative to each other [ l ]. 

In l1 ] a complete system of filtration equations for a saturated porous medium with elastic deformations 

of the solid phase is given. In the system, the equations of conservation of mass and momentum of the phases and 

the energy equation are closed by  the equations of state of the phases, by specifying the parameters of interphase 

interaction, and by the relationship between the fictitious stresses and deformations (in accordance with the 

generalized Hooke law) and the  equation for porosity variation. 

Soils consist of three phases, namely, solid, liquid (soil solution), and gas (air). The solid phase is a source 

of nutrient substances, the liquid phase provides transfer of the nutrients to the root system of plants, while the 

gas phase is responsible for gas transfer in the soil [46, 47 ]. 

The moisture mobility in soil depends on the structure of the latter, electrokinematic phenomena at the 

phase boundaries, and the rheological properties of the material. 

Depending on the ratio of the phases, soils as rheological systems can exist in different states (elastic, 

viscoelastic, etc.). Here, it is assumed that the evolution of deformation with time and with a change in the phases 

occurs under the action of capillary forces [46 ]. If the stresses developing in the porous-body skeleton due to the 

capillary forces do not exceed the limiting shear stress, the deformation is elastic. Then a certain Pa is responsible 

for the corresponding deformation (shrinkage) of the material. With decrease of the liquid phase, the capillary 

pressure Pa increases and the volume of the skeleton decreases, while with increase in the amount of liquid Pa 

decreases and the porous body swells. If the stresses exceed the limiting shear stress, plastic deformation develops 

[46 ]. 

The monograph [48 ] is devoted mainly to mathematical models of heat and mass transfer in soil. In 

particular, the problems of combined heat and moisture transfer in soils are investigated using a system of A. V. 

Luikov equations. Heat and moisture transfer in a so i l -a i r  system is investigated by the method of conjugate 

problems. The influence of the plant cover on the thermal and water regimes of the soil is also investigated. It is 
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important that statistical methods are used to analyze the temperature regime of the soil with allowance for daily 
and fractional daily fluctuations of agrometeorological factors. A separate chapter of the monograph [47 ] is devoted 

to methods and devices for thermophysical  measurements  in soil (measurements  of temperature ,  thermal 
conductivity, heat flux). 

An important branch of the thermophysics of soils is heat and mass transfer in frozen rock. As is 

emphasized in [49 ], in these cases the processes of transfer of heat, moisture, and dissolved substances and 
deformation of the structure of the material are closely interrelated. 

In [50 ], results of experimental studies of transfer processes in the interaction of frozen rock and salt 

solution are reported. It is shown that in this case a whole complex of physicochemical and structurization processes 
accompanied by transfer of heat, moisture, and chemical components exists. The  work [51 ] is devoted to 

mathematical modeling of results of anthropogenic contamination of frozen ground (in the ease of rupture of 

pipelines, sewage systems, etc.). Here, three models are discussed: the first is based on the Stefan problem, the 
second allows for the wate r - ice  phase transition in a temperature range, and in the third model it is assumed that 
the phase transition is accomplished with allowance for the concentration of the pore solution. 

It should be noted that in [52 ] efficient algorithms for solving a number of multifront problems of the 

Stefan type that describe heat and mass transfer with phase changes in rocks of various kinds are given, including 

problems of freezing with allowance for moisture migration. 
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